Social Networks as Data Source for Recommendation Systems

نویسندگان

  • Mathias Bank
  • Jürgen Franke
چکیده

Reviews and review based rankings are widely used in recommendation systems to provide potential customers quality information about selected products. During the last years, many researchers have shown that these reviews are neither objective nor do they represent real quality values. Even established ranking methods designed to fix this problem have been shown to be unreliable. In this work, user generated content of fora, weblogs and similar trustworthy social networks is proposed as an alternative data source. It is shown how this data can be used to calculate a satisfaction and relevance measure for different product features to provide potential customers reliable quality information. The method is evaluated in the automotive domain using J.D. Power’s established Initial Quality Study to ensure providing meaningful quality-related data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Review of Spatial Factor Modeling Techniques in Recommending Point of Interest Using Location-based Social Network Information

The rapid growth of mobile phone technology and its combination with various technologies like GPS has added location context to social networks and has led to the formation of location-based social networks. In social networking sites, recommender systems are used to recommend points of interest (POIs) to users. Traditional recommender systems, such as film and book recommendations, have a lon...

متن کامل

Mining Overlapping Communities in Real-world Networks Based on Extended Modularity Gain

Detecting communities plays a vital role in studying group level patterns of a social network and it can be helpful in developing several recommendation systems such as movie recommendation, book recommendation, friend recommendation and so on. Most of the community detection algorithms can detect disjoint communities only, but in the real time scenario, a node can be a member of more than one ...

متن کامل

A A Survey on Recommendations in Location-based Social Networks

Recent advances in position localization techniques have fundamentally enhanced social networking services, allowing users to share their locations and location-related content, such as geo-tagged photos and notes. We refer to these social networks as location-based social networks (LBSNs). Location data both bridges the gap between the physical and digital worlds and enables a deeper understan...

متن کامل

Probabilistic Contaminant Source Identification in Water Distribution Infrastructure Systems

Large water distribution systems can be highly vulnerable to penetration of contaminant factors caused by different means including deliberate contamination injections. As contaminants quickly spread into a water distribution network, rapid characterization of the pollution source has a high measure of importance for early warning assessment and disaster management. In this paper, a methodology...

متن کامل

The Power of Implicit Social Relation in Rating Prediction of Social Recommender Systems

The explosive growth of social networks in recent times has presented a powerful source of information to be utilized as an extra source for assisting in the social recommendation problems. The social recommendation methods that are based on probabilistic matrix factorization improved the recommendation accuracy and partly solved the cold-start and data sparsity problems. However, these methods...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010